66,517 research outputs found

    Journal Staff

    Get PDF
    We investigate the performance of delay constrained data transmission over wireless networks without end-to-end feedback. Forward error-correction coding (FEC) is performed at the bit level to combat channel distortions and random linear network coding (RLNC) is performed at the packet level to recover from packet erasures. We focus on the scenario where RLNC re-encoding is performed at intermediate nodes and we assume that any packet that contains bit errors after FEC decoding can be detected and erased. To facilitate explicit characterization of data transmission over network-coded wireless systems, we propose a generic two-layer abstraction of a network that models both bit/symbol-level operations at the lower layer (termed PHY-layer) over several heterogeneous links and packet-level operations at the upper layer (termed NET-layer). Based on this model, we propose a network reduction method to characterize the throughput-reliability function of the end-to-end transmission. Our approach not only reveals an explicit tradeoff between data delivery rate and reliability, but also provides an intuitive visualization of the bottlenecks within the underlying network. We illustrate our approach via a point-to-point link and a relay network and highlight the advantages of this method over capacity-based approaches.Accepted for publication in IEEE Globecom 2014. Copyright will be transferred to IEEE without notice.QS22014</p

    Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates

    Get PDF
    A method for fabricating planar implantable microelectrode arrays was demonstrated using a process that relied on ultra-thin silicon substrates, which ranged in thickness from 25 to 50 µm. The challenge of handling these fragile materials was met via a temporary substrate support mechanism. In order to compensate for putative electrical shielding of extracellular neuronal fields, separately addressable electrode arrays were defined on each side of the silicon device. Deep reactive ion etching was employed to create sharp implantable shafts with lengths of up to 5 mm. The devices were flip-chip bonded onto printed circuit boards (PCBs) by means of an anisotropic conductive adhesive film. This scalable assembly technique enabled three-dimensional (3D) integration through formation of stacks of multiple silicon and PCB layers. Simulations and measurements of microelectrode noise appear to suggest that low impedance surfaces, which could be formed by electrodeposition of gold or other materials, are required to ensure an optimal signal-to-noise ratio as well a low level of interchannel crosstalk

    Power Corrections in Charmless B Decays

    Full text link
    In this paper, we focus on the role of power corrections in QCD factorization(QCDF) method in charmless two-body nonleptonic BB meson decays. We use the ratio of the branching fraction of B+π+K0B^+ \to \pi^+ K^{\ast 0} to that of B0πρ+B^0 \to \pi^- \rho^+, for which the theoretical uncertainties are greatly reduced, to show clearly that the power corrections in charmless B decays are probably large. With other similar ratios considered, for example, for the B0Kρ+B^0 \to K^- \rho^+ decay, it is very likely that, among various sources of power corrections, annihilation topology plays an indispensable role at least for penguin dominated PV\rm PV channels. We also consider some selective ratios of direct CP asymmetries. Among these, we find that, if power corrections other than the chirally enhanced power corrections and annihilation topology were negligible, QCDF would predict the direct CP asymmetry of Bπ+πB \to \pi^+ \pi^- to be about 3 times larger than that of Bπ±KB \to \pi^\pm K^\mp, with opposite sign. Experimentally any significant deviation from this prediction would suggest either new physics or possibly the importance of long-distance rescattering effects.Comment: references and note added, to appear in Phys. Rev.

    Distributed MPC for coordinated energy efficiency utilization in microgrid systems

    Full text link
    To improve the renewable energy utilization of distributed microgrid systems, this paper presents an optimal distributed model predictive control strategy to coordinate energy management among microgrid systems. In particular, through information exchange among systems, each microgrid in the network, which includes renewable generation, storage systems, and some controllable loads, can maintain its own systemwide supply and demand balance. With our mechanism, the closed-loop stability of the distributed microgrid systems can be guaranteed. In addition, we provide evaluation criteria of renewable energy utilization to validate our proposed method. Simulations show that the supply demand balance in each microgrid is achieved while, at the same time, the system operation cost is reduced, which demonstrates the effectiveness and efficiency of our proposed policy.Accepted manuscrip
    corecore